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• The shunt admittance of a line consists of the conductance and the capacitive 
susceptance. The conductance is usually ignored because it is very small 
compared to the capacitive susceptance. 

• The capacitance of a line is the result of the potential difference between 
conductors. A charged conductor creates an electric field that emanates outward 
from the center of the conductor. Lines of equipotential are created that are 
concentric to the charged conductor. This is illustrated in Fig.1.

Fig.1 Electric field of a 
charged round 

conductor



Shunt Admittance of Overhead and 
Underground Lines
• In Fig.1, a difference of potential between two points (P1 and P2) 

is a result of the electric field of the charged conductor. When 
the potential difference between the two points is known, then 
the capacitance between the two points can be computed. 

• If there are other charged conductors nearby, the potential 
difference between the two points will be a function of the 
distance to the other conductors and the charge on each 
conductor. The principle of superposition is used to compute the 
total voltage drop between two points and then the resulting 
capacitance between the points. 

• The points can be points in space or the surface of two 
conductors or the surface of a conductor and ground.
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• Fig.2 shows an array of N positively charged solid round conductors. 
Each conductor has a unique uniform charge density of q cb/m.

• The voltage drop between conductor i and conductor j as a result of 
all of the charged conductors is given by

Fig.2 Array of round conductors

𝑉𝑉ij=
1
2𝜋𝜋𝜋𝜋

 (𝑞𝑞1 ∗ ln 𝐷𝐷1𝑗𝑗
𝐷𝐷1𝑖𝑖

+ ⋯𝑞𝑞𝑝𝑝 ∗ ln 𝐷𝐷𝑖𝑖𝑗𝑗
𝑅𝑅𝐷𝐷𝑖𝑖

+ ⋯𝑞𝑞𝑖𝑖 ∗ ln 𝑅𝑅𝐷𝐷𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

+ ⋯𝑞𝑞𝑁𝑁 ∗ ln 𝐷𝐷𝑁𝑁𝑗𝑗
𝐷𝐷𝑁𝑁𝑖𝑖

)

(1)
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𝑉𝑉ij=
1
2𝜋𝜋𝜋𝜋

 (𝑞𝑞1 ∗ ln 𝐷𝐷1𝑗𝑗
𝐷𝐷1𝑖𝑖

+ ⋯𝑞𝑞𝑝𝑝 ∗ ln 𝐷𝐷𝑖𝑖𝑗𝑗
𝑅𝑅𝐷𝐷𝑖𝑖

+ ⋯𝑞𝑞𝑖𝑖 ∗ ln 𝑅𝑅𝐷𝐷𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

+ ⋯𝑞𝑞𝑁𝑁 ∗ ln 𝐷𝐷𝑁𝑁𝑗𝑗
𝐷𝐷𝑁𝑁𝑖𝑖

)

(1)
Equation (1) can be written in a general form as

𝑉𝑉ij=
1
2𝜋𝜋𝜋𝜋

∑𝑖𝑖=1𝑁𝑁 𝑞𝑞𝑁𝑁 ∗ ln 𝐷𝐷𝑛𝑛𝑗𝑗
𝐷𝐷𝑛𝑛𝑖𝑖

(2)

where
•ε = ε0εr is the permittivity of the medium, ε0 is the permittivity of free 
space = 8.85 × 10−12 μF/m, εr is the relative permittivity of the medium
•qn is the charge density on conductor n cb/m
•Dni is the distance between conductor n and conductor i (ft)
•Dnj is the distance between conductor n and conductor j (ft)
•Dnn is the radius (RDn) of conductor n (ft)
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• The method of conductors and their images is employed in the calculation of the 
shunt capacitance of overhead lines. 

• This is the same concept that was used in the general application of Carson's 
equations. 

• Figure 3 illustrates the conductors and their images and will be used to develop a 
general voltage drop equation for overhead lines.

Fig.3 Conductors and images
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In Fig.3 it is assumed that
𝑞𝑞𝑝𝑝′ = −𝑞𝑞𝑝𝑝, 𝑞𝑞𝑖𝑖′ = −𝑞𝑞𝑖𝑖 (3)

𝑉𝑉ii′=
1
2𝜋𝜋𝜋𝜋

 (𝑞𝑞𝑝𝑝 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

+ 𝑞𝑞𝑝𝑝′ ∗ ln 𝑅𝑅𝐷𝐷𝑖𝑖
𝑆𝑆𝑖𝑖𝑖𝑖

+ 𝑞𝑞𝑖𝑖 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

+ 𝑞𝑞𝑖𝑖′ ∗ ln 𝐷𝐷𝑖𝑖𝑗𝑗
𝑆𝑆𝑖𝑖𝑗𝑗

)

(4)

Appling Equation (2) to Figure 5.3,

Fig.3 Conductors and images
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𝑉𝑉ii′=
1
2𝜋𝜋𝜋𝜋

 (𝑞𝑞𝑝𝑝 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

+ 𝑞𝑞𝑝𝑝′ ∗ ln 𝑅𝑅𝐷𝐷𝑖𝑖
𝑆𝑆𝑖𝑖𝑖𝑖

+ 𝑞𝑞𝑖𝑖 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

+ 𝑞𝑞𝑖𝑖′ ∗ ln 𝐷𝐷𝑖𝑖𝑗𝑗
𝑆𝑆𝑖𝑖𝑗𝑗

) (4)

𝑞𝑞𝑝𝑝′ = −𝑞𝑞𝑝𝑝, 𝑞𝑞𝑖𝑖′ = −𝑞𝑞𝑖𝑖 (3)

Because of the assumptions of Equation (3), Equation (4) can be simplified to

𝑉𝑉ii=
1
2𝜋𝜋𝜋𝜋

𝑞𝑞𝑝𝑝 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

−𝑞𝑞𝑝𝑝∗ ln 𝑅𝑅𝐷𝐷𝑖𝑖
𝑆𝑆𝑖𝑖𝑖𝑖

+ 𝑞𝑞𝑖𝑖 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

−𝑞𝑞j∗ ln 𝐷𝐷𝑖𝑖𝑗𝑗
𝑆𝑆𝑖𝑖𝑗𝑗

= 1
2𝜋𝜋𝜋𝜋

𝑞𝑞𝑝𝑝 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

+𝑞𝑞𝑝𝑝∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

+ 𝑞𝑞𝑖𝑖 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

+𝑞𝑞j∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

= 1
2𝜋𝜋𝜋𝜋

2𝑞𝑞𝑝𝑝 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

+ 2𝑞𝑞𝑖𝑖 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗 (5)

where
•Sii is the distance from conductor i to its image i′ (ft)
•Sij is the distance from conductor i to the image of 
conductor j′ (ft)
•Dij is the distance from conductor i to conductor j (ft)
•RDi is the radius of conductor i in ftFig.3 Conductors and images
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𝑉𝑉ii′=
1
2𝜋𝜋𝜋𝜋

2𝑞𝑞𝑝𝑝 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

+ 2𝑞𝑞𝑖𝑖 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗 (5)

Equation (5) gives the total voltage drop between conductor i and its image. The voltage drop 
between conductor i and ground will be one-half of that given in Equation (5):

𝑉𝑉ig= 1
2𝜋𝜋𝜋𝜋

𝑞𝑞𝑝𝑝 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

+ 𝑞𝑞𝑖𝑖 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

(6)
Equation (6) can be written in general form as

𝑉𝑉ig= �𝑃𝑃𝑝𝑝𝑝𝑝 ∗ 𝑞𝑞𝑝𝑝 + �𝑃𝑃𝑝𝑝𝑖𝑖 ∗ 𝑞𝑞𝑖𝑖 (7)
where �𝑃𝑃𝑝𝑝𝑝𝑝 and �𝑃𝑃𝑝𝑝𝑖𝑖 are the self- and mutual “potential coefficients.”
For overhead lines the relative permittivity of air is assumed to be 1.0 so that

𝜀𝜀0=1.0× 8.85 × 10−12  ⁄𝐹𝐹 𝑚𝑚, 𝜀𝜀air=1.4240 × 10−2 𝜇𝜇𝐹𝐹/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (8)
Using the value of permittivity in μF/mile, the self- and mutual potential coefficients are 
defined as �𝑃𝑃𝑝𝑝𝑝𝑝 = 11.17689 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖

𝑅𝑅𝐷𝐷𝑖𝑖
 mile/𝜇𝜇𝐹𝐹

�𝑃𝑃𝑝𝑝𝑖𝑖 = 11.17689 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑗𝑗

 mile/𝜇𝜇𝐹𝐹

(9)

(10)
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�𝑃𝑃𝑝𝑝𝑝𝑝 = 11.17689 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖
𝑅𝑅𝐷𝐷𝑖𝑖

 mile/𝜇𝜇𝐹𝐹

�𝑃𝑃𝑝𝑝𝑖𝑖 = 11.17689 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑗𝑗

 mile/𝜇𝜇𝐹𝐹

(9)

(10)

Note: In applying Equations (9) and (10), the values of RDi, Sii, Sij, and Dij must all be in the 
same units. For overhead lines the distances between conductors are typically specified in feet 
while the value of the conductor diameter from a table will typically be in inches. Care must be 
taken to ensure that the radius in feet is used in applying the two equations.
For an overhead line of ncond conductors, the “primitive potential coefficient matrix” can be 
constructed. The primitive potential coefficient matrix will be an ncond × ncond matrix. For a 
four-wire grounded wye line the primitive coefficient matrix will be of the form

�𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

�𝑃𝑃𝑎𝑎𝑎𝑎
�𝑃𝑃𝑏𝑏𝑎𝑎
�𝑃𝑃𝑐𝑐𝑎𝑎
�
�𝑃𝑃𝑖𝑖𝑎𝑎

�𝑃𝑃𝑎𝑎𝑏𝑏
�𝑃𝑃𝑏𝑏𝑏𝑏
�𝑃𝑃𝑐𝑐𝑏𝑏
�
�𝑃𝑃𝑖𝑖𝑏𝑏

�𝑃𝑃𝑎𝑎𝑐𝑐
�𝑃𝑃𝑏𝑏𝑐𝑐
�𝑃𝑃𝑐𝑐𝑐𝑐
�
�𝑃𝑃𝑖𝑖𝑐𝑐

�
�
�
�
�

�𝑃𝑃𝑎𝑎𝑖𝑖
�𝑃𝑃𝑏𝑏𝑖𝑖
�𝑃𝑃𝑐𝑐𝑖𝑖
�
�𝑃𝑃𝑖𝑖𝑖𝑖

(11)
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�𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

�𝑃𝑃𝑎𝑎𝑎𝑎
�𝑃𝑃𝑏𝑏𝑎𝑎
�𝑃𝑃𝑐𝑐𝑎𝑎
�
�𝑃𝑃𝑖𝑖𝑎𝑎

�𝑃𝑃𝑎𝑎𝑏𝑏
�𝑃𝑃𝑏𝑏𝑏𝑏
�𝑃𝑃𝑐𝑐𝑏𝑏
�
�𝑃𝑃𝑖𝑖𝑏𝑏

�𝑃𝑃𝑎𝑎𝑐𝑐
�𝑃𝑃𝑏𝑏𝑐𝑐
�𝑃𝑃𝑐𝑐𝑐𝑐
�
�𝑃𝑃𝑖𝑖𝑐𝑐

�
�
�
�
�

�𝑃𝑃𝑎𝑎𝑖𝑖
�𝑃𝑃𝑏𝑏𝑖𝑖
�𝑃𝑃𝑐𝑐𝑖𝑖
�
�𝑃𝑃𝑖𝑖𝑖𝑖

(11)

The dots (·) in Equation (11) are partitioning the matrix between the third and fourth 
rows and columns. In partitioned form Equation (11) becomes

�𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
�𝑃𝑃𝑝𝑝𝑖𝑖 �𝑃𝑃𝑝𝑝𝑖𝑖
�𝑃𝑃𝑖𝑖𝑖𝑖 �𝑃𝑃𝑖𝑖𝑖𝑖

(12)

Because the neutral conductor is grounded, the matrix can be reduced using the “Kron 
reduction” method to an n-phase × n-phase phase potential coefficient matrix [Pabc] 
given by

[𝑃𝑃𝑎𝑎𝑏𝑏𝑐𝑐]= �𝑃𝑃𝑝𝑝𝑖𝑖 - �𝑃𝑃𝑝𝑝𝑖𝑖 ∗ �𝑃𝑃𝑖𝑖𝑖𝑖
−1∗ �𝑃𝑃𝑖𝑖𝑖𝑖 (13)

The inverse of the potential coefficient matrix will give the n-phase × n-phase 
capacitance matrix [Cabc]: [𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐]= �𝑃𝑃𝑎𝑎𝑏𝑏𝑐𝑐

−1
(14)



Overhead Lines

14

ECpE Department

[𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐]= 𝑃𝑃𝑎𝑎𝑏𝑏𝑐𝑐 −1 (14)

For a two-phase line the capacitance matrix of Equation (14) will be 2 × 2. A 
row and a column of zeros must be inserted for the missing phase. For a 
single-phase line, Equation (14) will result in a single element. Again rows 
and columns of zero must be inserted for the missing phase. In the case of the 
single-phase line, the only nonzero term will be that of the phase in use.
Neglecting the shunt conductance, the phase shunt admittance matrix is given 
by

[𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐]= 0 + 𝑗𝑗 ∗ 𝜔𝜔 ∗[𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐] 𝜇𝜇𝑆𝑆/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (15)

where
𝜔𝜔 = 2 ∗ 𝜋𝜋 ∗ 𝑓𝑓 = 376.9911
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Determine the shunt admittance matrix for the overhead line. Assume that the 
neutral conductor is 25 ft above ground.
The diameters of the phase and neutral conductors from the conductor table 
(Appendix A) are: 
Conductor, 336,400 26/7 ACSR, 𝑑𝑑𝑐𝑐 = 0.721 𝑚𝑚𝑖𝑖. ,𝑅𝑅𝑅𝑅𝑐𝑐 = 0.03004 𝑓𝑓𝑓𝑓; 4/0 6/1 
ACSR, 𝑑𝑑𝑐𝑐 = 0.563 𝑚𝑚𝑖𝑖. ,𝑅𝑅𝑅𝑅𝑐𝑐 = 0.02346 𝑓𝑓𝑓𝑓

Overhead line of Example 4.1
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Using the Cartesian coordinated in Example 4.1, the image distance matrix is 
given by

𝑆𝑆𝑝𝑝𝑖𝑖 = 𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑖𝑖∗

Where 𝑑𝑑𝑖𝑖∗ is the conjugate of 𝑑𝑑𝑖𝑖 

For the configuration the distances between conductors and images in matrix 
form are

𝑆𝑆 =

58
58.0539
58.4209
54.1479

58.0539
58

58.1743
54.0208

 

58.4209
58.1743

58
54.0833

54.1479
54.0208
54.0833

50

 𝑓𝑓𝑓𝑓

The self-primitive potential coefficient for phase a and the mutual primitive 
potential coefficient between phases a and b are

�𝑃𝑃𝑎𝑎𝑎𝑎 = 11.17689 ∗ ln 58
0.03004

= 84.5600 mile/𝜇𝜇𝐹𝐹

�𝑃𝑃𝑎𝑎𝑏𝑏 = 11.17689 ∗ ln 58.0539
2.5

= 35.1522 mile/𝜇𝜇𝐹𝐹
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Example 1
�𝑃𝑃𝑝𝑝𝑝𝑝 = 11.17689 ∗ ln 𝑆𝑆𝑖𝑖𝑖𝑖

𝑅𝑅𝐷𝐷𝑖𝑖
 mile/𝜇𝜇𝐹𝐹

�𝑃𝑃𝑝𝑝𝑖𝑖 = 11.17689 ∗ ln 𝑆𝑆𝑖𝑖𝑗𝑗
𝐷𝐷𝑗𝑗

 mile/𝜇𝜇𝐹𝐹

(9)
(10)

Using Equations (9) and (10), the total primitive potential coefficient matrix is 
computed to be

�𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

84.5600
35.1522
23.7147
25.2469

35.1522
84.5600
28.6058
28.3590

 

23.7147
28.6058
84.5600
26.6131

25.2469
28.3590
26.6131
85.6659

mile/𝜇𝜇𝐹𝐹

Since the fourth conductor (neutral) is grounded, the Kron reduction method is used to 
compute the “phase potential coefficient matrix.” Because only one row and one 
column need to be eliminated, the [ �𝑃𝑃𝑖𝑖𝑖𝑖] term is a single element so that the Kron 
reduction equation for this case can be modified to

𝑃𝑃𝑝𝑝𝑖𝑖 = �𝑃𝑃𝑝𝑝𝑖𝑖 −
�𝑃𝑃𝑝𝑝4 ∗ �𝑃𝑃𝑖𝑖4
�𝑃𝑃44

where i = 1, 2, 3 and j = 1, 2, 3.
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For example, the value of Pcb is computed to be

𝑃𝑃𝑐𝑐𝑏𝑏 = �𝑃𝑃32 −
�𝑃𝑃34∗ �𝑃𝑃24
�𝑃𝑃44

= 28.6058 − 26.6134∗28.359
85.6659

 = 19.7957

Following the Kron reduction, the phase potential coefficient matrix is

𝑃𝑃𝑎𝑎𝑏𝑏𝑐𝑐 =
77.1194 26.7944 15.8714
26.7944 75.1720 19.7957
15.8714 19.7957 76.2923

Invert [Pabc] to determine the shunt capacitance matrix:

𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐 =[𝑃𝑃]−1=
0.015 −0.0049 −0.0019

−0.0049 0.0159 −0.0031
−0.0019 −0.0031 0.0143

Multiply [Cabc] by the radian frequency to determine the final three-phase shunt 
admittance matrix:

𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐 =j*376.9911* 𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐 =
𝑗𝑗𝑗.6711 −𝑗𝑗𝑗.8362 −𝑗𝑗𝑗.7033
−𝑗𝑗𝑗.8362 𝑗𝑗𝑗.9774 −𝑗𝑗𝑗.1690
−𝑗𝑗𝑗.7033 −𝑗𝑗𝑗.169 𝑗𝑗𝑗.3911

 𝜇𝜇𝑆𝑆/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Most underground distribution lines consist of one or more concentric neutral 
cables. Fig.4 illustrates a basic concentric neutral cable with center conductor 
being the phase conductor and the concentric neutral strands displaced 
equally around a circle of radius Rb.

Fig.4 Conductors and images
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Referring to Fig.4 the following definitions apply:
Rb represents the radius of a circle passing through the centers of the neutral 
strands.
dc represents the diameter of the phase conductor.
ds represents the diameter of a neutral strand.
k represents the total number of neutral strands.

Fig.4 Conductors and images
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𝑉𝑉ij=
1
2𝜋𝜋𝜋𝜋

∑𝑖𝑖=1𝑁𝑁 𝑞𝑞𝑁𝑁 ∗ ln 𝐷𝐷𝑛𝑛𝑗𝑗
𝐷𝐷𝑛𝑛𝑖𝑖

(2)
The concentric neutral strands are grounded so that they are all at the same potential. 
Because of the stranding, it is assumed that the electric field created by the charge on 
the phase conductor will be confined to the boundary of the concentric neutral strands. 
In order to compute the capacitance between the phase conductor and ground, the 
general voltage drop of Equation (2) will be applied. Since all of the neutral strands are 
at the same potential, it is necessary to determine only the potential difference between 
the phase conductor p and strand 1.

𝑉𝑉𝑝𝑝1= 1
2𝜋𝜋𝜋𝜋

 (𝑞𝑞𝑝𝑝 ∗ ln 𝑅𝑅𝑏𝑏
𝑅𝑅𝐷𝐷𝑐𝑐

+ 𝑞𝑞1 ∗ ln 𝑅𝑅𝐷𝐷𝑠𝑠
𝑅𝑅𝑏𝑏

+ 𝑞𝑞2 ∗ ln 𝐷𝐷12
𝑅𝑅𝑏𝑏

+ ⋯𝑞𝑞𝑝𝑝 ∗ ln 𝐷𝐷1𝑖𝑖
𝑅𝑅𝑏𝑏

+ ⋯𝑞𝑞𝑘𝑘 ∗ ln 𝐷𝐷𝑘𝑘1
𝑅𝑅𝑏𝑏

)

(16)where
𝑅𝑅𝑅𝑅𝑐𝑐 =

𝑑𝑑𝑐𝑐
2

,𝑅𝑅𝑅𝑅𝑠𝑠 =
𝑑𝑑𝑠𝑠
2

It is assumed that each of the neutral strands carries the same charge such that

𝑞𝑞1 = 𝑞𝑞2 = 𝑞𝑞𝑝𝑝 = 𝑞𝑞𝑘𝑘 = −
𝑞𝑞𝑝𝑝
𝑘𝑘 (17)
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𝑉𝑉𝑝𝑝1= 1
2𝜋𝜋𝜋𝜋

 (𝑞𝑞𝑝𝑝 ∗ ln 𝑅𝑅𝑏𝑏
𝑅𝑅𝐷𝐷𝑐𝑐

+ 𝑞𝑞1 ∗ ln 𝑅𝑅𝐷𝐷𝑠𝑠
𝑅𝑅𝑏𝑏

+ 𝑞𝑞2 ∗ ln 𝐷𝐷12
𝑅𝑅𝑏𝑏

+ ⋯𝑞𝑞𝑝𝑝 ∗

ln 𝐷𝐷1𝑖𝑖
𝑅𝑅𝑏𝑏

+ ⋯𝑞𝑞𝑘𝑘 ∗ ln 𝐷𝐷𝑘𝑘1
𝑅𝑅𝑏𝑏

) (16)

Equation (16) can be simplified to

𝑉𝑉𝑝𝑝1= 1
2𝜋𝜋𝜋𝜋

𝑞𝑞𝑝𝑝 ∗ ln 𝑅𝑅𝑏𝑏
𝑅𝑅𝐷𝐷𝑐𝑐

− 𝑞𝑞𝑝𝑝
𝑘𝑘

ln 𝑅𝑅𝐷𝐷𝑠𝑠
𝑅𝑅𝑏𝑏

+ ln 𝐷𝐷12
𝑅𝑅𝑏𝑏

+ ⋯+ ln 𝐷𝐷1𝑖𝑖
𝑅𝑅𝑏𝑏

+ ⋯+ ln 𝐷𝐷𝑘𝑘1
𝑅𝑅𝑏𝑏

      = 𝑞𝑞𝑝𝑝
2𝜋𝜋𝜋𝜋

ln 𝑅𝑅𝑏𝑏
𝑅𝑅𝐷𝐷𝑐𝑐

− 1
𝑘𝑘

ln 𝑅𝑅𝐷𝐷𝑠𝑠∗𝐷𝐷12∗𝐷𝐷1𝑖𝑖…𝐷𝐷1𝑘𝑘
𝑅𝑅𝑏𝑏
𝑘𝑘 (18)
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The numerator of the second ln term in Equation (18) needs to be expanded. 
The numerator represents the product of the radius and the distances between 
strand i and all of the other strands. Referring to Fig.4, the following 
relations apply:

𝜃𝜃12 =
2𝜋𝜋
𝑘𝑘

𝜃𝜃13 = 2𝜃𝜃12 =
4𝜋𝜋
𝑘𝑘

In general, the angle between strand #1 and any 
other strand #i is given by

Fig.4 Conductors and images

𝜃𝜃1𝑝𝑝 = (𝑚𝑚 − 1)𝜃𝜃12 =
𝑚𝑚 − 1 ∗ 2𝜋𝜋

𝑘𝑘
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The distances between the various strands are given by

𝑅𝑅12 = 2 ∗ 𝑅𝑅𝑏𝑏 ∗ sin(
𝜃𝜃12
2

) = 2 ∗ 𝑅𝑅𝑏𝑏 ∗ sin(
𝜋𝜋
𝑘𝑘

)

𝑅𝑅13 = 2 ∗ 𝑅𝑅𝑏𝑏 ∗ sin(
𝜃𝜃13
2

) = 2 ∗ 𝑅𝑅𝑏𝑏 ∗ sin(
2𝜋𝜋
𝑘𝑘

)
(20)

The distance between strand 1 and any other strand i is given by

𝑅𝑅1𝑝𝑝 = 2 ∗ 𝑅𝑅𝑏𝑏 ∗ sin(
𝜃𝜃1𝑝𝑝
2

) = 2 ∗ 𝑅𝑅𝑏𝑏 ∗ sin(
𝑚𝑚 − 1 ∗ 𝜋𝜋

𝑘𝑘
) (21)

Equation (21) can be used to expand the numerator of the second log term of 
Equation (18):

𝑅𝑅𝑅𝑅𝑠𝑠 ∗ 𝑅𝑅12 …𝑅𝑅1𝑝𝑝 …𝑅𝑅1𝑘𝑘

= 𝑅𝑅𝑅𝑅𝑠𝑠 ∗ 𝑅𝑅𝑏𝑏𝑘𝑘−1[2 sin
𝜋𝜋
𝑘𝑘

∗ 2 sin
2𝜋𝜋
𝑘𝑘

… 2 sin(
(𝑚𝑚 − 1)𝜋𝜋

𝑘𝑘
) … 2 sin(

(𝑘𝑘 − 1) 
𝑘𝑘

)]

(22)
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𝑅𝑅𝑅𝑅𝑠𝑠 ∗ 𝑅𝑅12 …𝑅𝑅1𝑝𝑝 …𝑅𝑅1𝑘𝑘

= 𝑅𝑅𝑅𝑅𝑠𝑠 ∗ 𝑅𝑅𝑏𝑏𝑘𝑘−1[2 sin
𝜋𝜋
𝑘𝑘

∗ 2 sin
2𝜋𝜋
𝑘𝑘

… 2 sin(
(𝑚𝑚 − 1)𝜋𝜋

𝑘𝑘
) … 2 sin(

(𝑘𝑘 − 1) 
𝑘𝑘

)] (22)

𝑉𝑉𝐿𝐿𝐿𝐿 = 𝑃𝑃 ∗ [𝑞𝑞] (23)

The distance between strand 1 and any other strand i is given by

𝑅𝑅1𝑝𝑝 = 2 ∗ 𝑅𝑅𝑏𝑏 ∗ sin(
𝜃𝜃1𝑝𝑝
2

) = 2 ∗ 𝑅𝑅𝑏𝑏 ∗ sin(
𝑚𝑚 − 1 ∗ 𝜋𝜋

𝑘𝑘
) (21)

Equation (21) can be used to expand the numerator of the second log term 
of Equation (18):

𝑅𝑅𝑅𝑅𝑠𝑠 ∗ 𝑅𝑅12 …𝑅𝑅1𝑝𝑝 …𝑅𝑅1𝑘𝑘

= 𝑅𝑅𝑅𝑅𝑠𝑠 ∗ 𝑅𝑅𝑏𝑏𝑘𝑘−1[2 sin
𝜋𝜋
𝑘𝑘

∗ 2 sin
2𝜋𝜋
𝑘𝑘

… 2 sin(
(𝑚𝑚 − 1)𝜋𝜋

𝑘𝑘
) … 2 sin(

(𝑘𝑘 − 1) 
𝑘𝑘

)] (22)
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𝑉𝑉𝑝𝑝1= 𝑞𝑞𝑝𝑝
2𝜋𝜋𝜋𝜋

ln 𝑅𝑅𝑏𝑏
𝑅𝑅𝐷𝐷𝑐𝑐

− 1
𝑘𝑘

ln k∗𝑅𝑅𝐷𝐷𝑠𝑠∗𝑅𝑅𝑏𝑏
𝑘𝑘−1

𝑅𝑅𝑏𝑏
𝑘𝑘 = 𝑞𝑞𝑝𝑝

2𝜋𝜋𝜋𝜋
ln 𝑅𝑅𝑏𝑏

𝑅𝑅𝐷𝐷𝑐𝑐
− 1

𝑘𝑘
ln k∗𝑅𝑅𝐷𝐷𝑠𝑠

𝑅𝑅𝑏𝑏 (24)

Since the neutral strands are all grounded, Equation (24) gives the voltage drop 
between the phase conductor and ground. Therefore, the capacitance from 
phase to ground for a concentric neutral cable is given by

𝐶𝐶𝑝𝑝𝑝𝑝= 𝑞𝑞𝑝𝑝
𝑉𝑉𝑝𝑝1

= 2𝜋𝜋𝜋𝜋
ln ⁄𝑅𝑅𝑏𝑏 𝑅𝑅𝐷𝐷𝑐𝑐 −( ⁄1 𝑘𝑘) ln(𝑘𝑘∗ ⁄𝑅𝑅𝐷𝐷𝑠𝑠 𝑅𝑅𝑏𝑏) (25)

where
•ε = ε0εr is the permittivity of the medium
•ε0 is the permittivity of free space = 0.01420 μF/mile
•εr is the relative permittivity of the medium
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Concentric Neutral Cable Underground Lines
The electric field of a cable is confined to the insulation material. Various types 
of insulation material are used, and each will have a range of values for the 
relative permittivity. Table.1 gives the range of values of relative permittivity 
for four common insulation materials.

Material Range of Value of Relative 
Permittivity

Polyvinyl chloride (PVC) 3.4-8.0

Ethylene-propylene rubber (EPR) 2.5-3.5

Polyethylene (PE) 2.5-2.6

Cross-linked polyethylene (XLPE) 2.3-6.0

Table.1 Typical Values of Relative Permittivity (𝜖𝜖𝑝𝑝)
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Concentric Neutral Cable Underground Lines

Cross-linked polyethylene is a very popular insulation 
material. If the minimum value of relative permittivity is 
assumed as 2.3, the equation for the shunt admittance of the 
concentric neutral cable is given by

𝑦𝑦𝑎𝑎𝑝𝑝 = 0 + 𝑗𝑗
77.3619

ln ⁄𝑅𝑅𝑏𝑏 𝑅𝑅𝑅𝑅𝑐𝑐 − ( ⁄1 𝑘𝑘) ln(𝑘𝑘 ∗ ⁄𝑅𝑅𝑅𝑅𝑠𝑠 𝑅𝑅𝑏𝑏)
 𝜇𝜇𝑆𝑆/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(26)
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Example 3
Determine the three-phase shunt admittance matrix for the concentric neutral 
line.

𝑅𝑅𝑏𝑏 = 𝑅𝑅 = 0.0511 𝑓𝑓𝑓𝑓 = 0.631 𝑚𝑚𝑖𝑖

Diameter of the 250,000 AA phase conductor = 0.567 in. Therefore,

𝑅𝑅𝑅𝑅𝑐𝑐 =
0.567

2
= 0.2835 𝑚𝑚𝑖𝑖

Diameter of the #14 CU concentric neutral strand = 0.0641 in. Therefore,

𝑅𝑅𝑅𝑅𝑠𝑠 =
0.0641

2
= 0.03205 𝑚𝑚𝑖𝑖
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Example 3
Substitute into (26)

𝑦𝑦𝑎𝑎𝑝𝑝 = 𝑗𝑗
77.3619

ln ⁄𝑅𝑅𝑏𝑏 𝑅𝑅𝑅𝑅𝑐𝑐 − ( ⁄1 𝑘𝑘) ln(𝑘𝑘 ∗ ⁄𝑅𝑅𝑅𝑅𝑠𝑠 𝑅𝑅𝑏𝑏) (26)

𝑦𝑦𝑎𝑎𝑝𝑝 = 𝑗𝑗
77.3619

ln ⁄0.6132 0.2835 − ( ⁄1 13) ln(13 ∗ ⁄0.03205 0.6132)
= 𝑗𝑗𝑗𝑗.6098 𝜇𝜇𝑆𝑆/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

The phase admittance for this three-phase underground line is

𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐 =
𝑗𝑗𝑗𝑗.6098 0 0

0 𝑗𝑗𝑗𝑗.6098 0
0 0 𝑗𝑗𝑗𝑗.6098

 𝜇𝜇𝑆𝑆/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Tape-Shielded Cable Underground Lines
A tape-shielded cable is shown in Figure 5. Referring to Figure 5 Rb is the radius of a 
circle passing through the center of the tape shield. As with the concentric neutral 
cable, the electric field is confined to the insulation so that the relative permittivity of 
Table 1 will apply.

Material Range of Value of 
Relative Permittivity

Polyvinyl chloride 
(PVC)

3.4-8.0

Ethylene-propylene 
rubber (EPR)

2.5-3.5

Polyethylene (PE) 2.5-2.6

Cross-linked 
polyethylene (XLPE)

2.3-6.0
Fig.5 Tape-shielded conductor

Table 1 Typical Values of Relative Permittivity (𝜖𝜖𝑝𝑝)
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Tape-Shielded Cable Underground Lines

𝑉𝑉𝑝𝑝1= 1
2𝜋𝜋𝜋𝜋

𝑞𝑞𝑝𝑝 ∗ ln 𝑅𝑅𝑏𝑏
𝑅𝑅𝐷𝐷𝑐𝑐

− 𝑞𝑞𝑝𝑝
𝑘𝑘

ln 𝑅𝑅𝐷𝐷𝑠𝑠
𝑅𝑅𝑏𝑏

+ ln 𝐷𝐷12
𝑅𝑅𝑏𝑏

+ ⋯+ ln 𝐷𝐷1𝑖𝑖
𝑅𝑅𝑏𝑏

+ ⋯+ ln 𝐷𝐷𝑘𝑘1
𝑅𝑅𝑏𝑏

      = 𝑞𝑞𝑝𝑝
2𝜋𝜋𝜋𝜋

ln 𝑅𝑅𝑏𝑏
𝑅𝑅𝐷𝐷𝑐𝑐

− 1
𝑘𝑘

ln 𝑅𝑅𝐷𝐷𝑠𝑠∗𝐷𝐷12∗𝐷𝐷1𝑖𝑖…𝐷𝐷1𝑘𝑘
𝑅𝑅𝑏𝑏
𝑘𝑘

(18)

The tape-shielded conductor can be visualized as a concentric neutral cable 
where the number of strands k has become infinite. When k in Equation (18) 
approaches infinity, the second term in the denominator approaches zero. 
Therefore, the equation for the shunt admittance of a tape-shielded conductor 
becomes

𝑦𝑦𝑎𝑎𝑝𝑝 = 0 + 𝑗𝑗
77.3619

ln ⁄𝑅𝑅𝑏𝑏 𝑅𝑅𝑅𝑅𝑐𝑐
 𝜇𝜇𝑆𝑆/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (27)
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Example 4
Determine the shunt admittance of the single-phase tape-shielded cable. 
Outside diameter of the tape shield is 0.88 in. The thickness of the tape 
shield (T) is 5 mil. The radius of a circle passing through the center of the 
tape shield is given by

𝑇𝑇 =
5

1000
= 0.005

𝑅𝑅𝑏𝑏 = 𝑑𝑑𝑠𝑠−𝑇𝑇
2

= 0.88−0.005
2

= 0.4375 in

The diameter of the 1/0 AA phase conductor is 0.368 in. Therefore,

𝑅𝑅𝑅𝑅𝑐𝑐 = 𝑑𝑑𝑝𝑝
2

= 0.368
2

= 0.1840 in

Substitute into Equation (27):

𝑦𝑦𝑎𝑎𝑝𝑝 = 𝑗𝑗
77.3619

ln ⁄𝑅𝑅𝑏𝑏 𝑅𝑅𝑅𝑅𝑐𝑐
= 𝑗𝑗

77.3619
ln ⁄0.4375 0.184

= 𝑗𝑗𝑗𝑗.3179 𝜇𝜇𝑆𝑆/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Example 5.4
The phase admittance for this three-phase underground line is

𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐 =
0 0 0
0 𝑗𝑗89.3179 0
0 0 0

 𝜇𝜇𝑆𝑆/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Sequence Admittance

The sequence admittances of a three-phase line can be determined in much 
the same manner as the sequence impedances were determined. Assume that 
the 3 × 3 admittance matrix is given in S/mile. Then the three-phase 
capacitance currents as a function of the line-to-ground voltages are given by

𝐼𝐼ca𝑝𝑝𝑎𝑎
𝐼𝐼ca𝑝𝑝𝑏𝑏
𝐼𝐼ca𝑝𝑝𝑐𝑐

=
𝑦𝑦𝑎𝑎𝑎𝑎 𝑦𝑦𝑎𝑎𝑏𝑏 𝑦𝑦𝑎𝑎𝑐𝑐
𝑦𝑦𝑏𝑏𝑎𝑎 𝑦𝑦𝑏𝑏𝑏𝑏 𝑦𝑦𝑏𝑏𝑐𝑐
𝑦𝑦𝑐𝑐𝑎𝑎 𝑦𝑦𝑐𝑐𝑏𝑏 𝑦𝑦𝑐𝑐𝑐𝑐

𝑉𝑉𝑎𝑎𝑝𝑝
𝑉𝑉𝑏𝑏𝑝𝑝
𝑉𝑉𝑐𝑐𝑝𝑝

(28)

𝐼𝐼ca𝑝𝑝𝑎𝑎𝑏𝑏𝑐𝑐 = 𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐 𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 (29)

Applying the symmetrical component transformations

𝐼𝐼ca𝑝𝑝012 =[𝐴𝐴𝑆𝑆]−1 𝐼𝐼ca𝑝𝑝𝑎𝑎𝑏𝑏𝑐𝑐 =[𝐴𝐴𝑆𝑆]−1 𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐 𝐴𝐴𝑠𝑠 𝑉𝑉𝑉𝑉𝑉𝑉012 (30)
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Sequence Admittance
𝐼𝐼ca𝑝𝑝012 =[𝐴𝐴𝑆𝑆]−1 𝐼𝐼ca𝑝𝑝𝑎𝑎𝑏𝑏𝑐𝑐 =[𝐴𝐴𝑆𝑆]−1 𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐 𝐴𝐴𝑠𝑠 𝑉𝑉𝑉𝑉𝑉𝑉012 (30)

From Equation (30), the sequence admittance matrix is given by

y012 = [𝐴𝐴𝑆𝑆]−1 𝑦𝑦𝑎𝑎𝑏𝑏𝑐𝑐 𝐴𝐴𝑠𝑠 =
𝑦𝑦00 𝑦𝑦01 𝑦𝑦02
𝑦𝑦10 𝑦𝑦11 𝑦𝑦12
𝑦𝑦20 𝑦𝑦21 𝑦𝑦22

(31)

For a three-phase overhead line with unsymmetrical spacing, the sequence 
admittance matrix will be full. That is, the off-diagonal terms will be nonzero. 
However, a three-phase underground line with three identical cables will only 
have the diagonal terms since there is no “mutual capacitance” between 
phases. In fact, the sequence admittances will be exactly the same as the phase 
admittances.
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Thank You!
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